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Abstract The drift paradox asks how stream-dwelling organisms can persist, with-
out being washed out, when they are continuously subject to the unidirectional stream
flow. To date, mathematical analyses of the stream paradox have investigated the inter-
play of growth, drift and flow needed for species persistence under the assumption that
the stream environment is temporally constant. However, in reality, streams are subject
to major seasonal variations in environmental factors that govern population growth
and dispersal. We consider the influence of such seasonal variations on the drift para-
dox, using a time-periodic integrodifferential equation model. We establish upstream
and downstream spreading speeds under the assumption of periodically fluctuating
environments, and also show the existence of periodic traveling waves. The sign of
the upstream spreading speed then determines persistence. Fluctuating environments
are characterized by seasonal correlations between the flow, transfer rates, diffusion
and settling rates, and we investigate the effect of such correlations on the population
spread and persistence. We also show how results in this paper can formally con-
nect to those for autonomous integrodifferential equations, through the appropriate
weighted averaging methods. Finally, for a specific dispersal function, we show that
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the upstream spreading speed is nonnegative if and only if the critical domain size
exists in this temporally fluctuating environment.

Keywords Seasonal environment · Population · Stream · Spreading speeds ·
Periodic traveling waves
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1 Introduction

Because stream species are subject to unidirectional flows for much of their lives,
their growth, movement and persistence in the flow has attracted increasing scientific
scrutiny. Indeed, the influences of population dynamics, individual random diffusion
and flow velocity on the spread and persistence of a population in a stream have been
extensively investigated by mathematicians and ecologists (see, e.g., Kot et al. 1996;
Kot and Schaffer 1986; Lutscher et al. 2006, 2005; Müller 1954, 1982; Pachepsky
et al. 2005; Speirs and Gurney 2001; Van Kirk and Lewis 1997). However, to date,
these investigations have focused on temporally constant stream environments, even
though typical temperate stream environments can exhibit strong seasonal fluctuations
in both population growth rates and hydrodynamical properties such as flow rates and
random dispersal. This seasonality may be a key factor that can affect the population
spread or persistence and thus its influence cannot be neglected in long term studies
of stream species. One approach to investigate such seasonality is to ask how math-
ematical predictions for population persistence and invasion in streams change, both
quantitatively and qualitatively, when the seasonality is included in models for stream
populations.

Traditional mathematical models for populations in streams are partial differen-
tial equations, in which population dispersal consists of local random diffusion and
movements caused by water advection (see e.g., Lutscher et al. 2006; Pachepsky et al.
2005; Speirs and Gurney 2001). In recent years, integrodifference and integrodif-
ferential equations have been used to describe biological invasions and population
persistence (see e.g., Jin and Zhao 2009; Kot et al. 1996; Kot and Schaffer 1986;
Lutscher et al. 2005; Van Kirk and Lewis 1997). Integrodifferential equations pro-
vide a flexible modelling framework for population dispersal in streams because both
asymmetric dispersal and long-range effects are taken into account (Lutscher et al.
2005). In these models, the long distance dispersal of a population is described by a
dispersal kernel, k(x, y), which represents the proportion of individuals moving from
location y to location x over a given dispersal event.

For many aquatic organisms it is reasonable to expect that dispersal will operate on
a fast fine scale of days or weeks relative to a slower fine scale of months or years for
population dynamics. In these cases, a simple form for the dispersal kernels can be
derived from a submodel (see Appendix A) operating on the fast fine scale that involves
population diffusion (D), water advection (v) and population settling from water to
benthos (β) (see also Lutscher et al. 2005 for a derivation of the time-independent
version). This gives rise to an asymmetric dispersal kernel
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k(t, x, y) =
{

A(t) exp(b1(t)(x − y)), x − y ≤ 0
A(t) exp(b2(t)(x − y)), x − y > 0

(1.1)

where

b1,2(t) = v(t)

2D(t)
±
√
v2(t)

4D2(t)
+ β(t)

D(t)

and

A(t) = b1(t)b2(t)

b2(t)− b1(t)
,

where the asymmetry arises from the advection v(t). Figure 1a, b give examples of
symmetric and asymmetric versions of this dispersal kernel, respectively. It is clear
that in natural streams, the stream factors such as water discharge, temperature, light
and etc, and population dynamics usually vary in time, especially in different seasons.
Therefore, it is reasonable to introduce a time-dependent dispersal kernel k(t, x, y)
into a stream population model. Moreover, note that many previous authors have
imposed symmetry condition on the dispersal kernel k(t, x, y) = k(t, y, x), which
means that the proportion that the population moving from location x to location y
is the same as that from y to x . While this may be true for many population systems,
it is unreasonable when we consider a species dispersing in a river or stream where
the individuals face a unidirectional flow (see Fig. 2). The water advection reduces
the probability of upstream movement and increases the probability of downstream
movement, and hence provides reasons for assuming an asymmetric dispersal kernel
k(t, x, y) for stream species.

In this work, based on an extension of the autonomous integro-differential equation
in Lutscher et al. (2005), we will investigate the influences of the seasonal variations
of population dynamics and dispersal on the population spread and persistence in
streams. We consider the following periodic model for stream species
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Fig. 1 Time-independent dispersal kernels k(t, x, y) defined in (1.1), where the diffusion rate D(t) ≡ 1,
the settling rate β(t) ≡ 1. a The flow velocity v(t) ≡ 0. b The flow velocity v(t) ≡ 2
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Upstream Downstream

Population density distribution

c− c+

Flow speed (v)

Fig. 2 The flow speed v, upstream spreading speed c− and downstream spreading speed c+ of a population
in a stream. The directions of the arrows indicate the positive direction of the corresponding variables. That
is, v > 0 corresponds to the flow to the downstream and v < 0 to the flow to the upstream; c+ > 0 cor-
responds to population spreading to the downstream and c+ < 0 to population spreading to the upstream;
c− > 0 corresponds to population spreading to the upstream and c− < 0 to population spreading to the
downstream. Due to the definition of c−, the relation between the sign of c− and population’s spreading
direction in this paper is different from that in some previous works (e.g., Lutscher et al. 2005), where
c− > 0 corresponds to population spreading to the downstream and c− < 0 to population spreading to the
upstream

∂u(t, x)

∂t
= u(t, x)g(t, u(t, x))︸ ︷︷ ︸

growth

− a(t)u(t, x)︸ ︷︷ ︸
emigration

+ a(t)
∫
�

k(t, x, y)u(t, y)dy

︸ ︷︷ ︸
immigration

, t ≥ 0, x ∈ �, (1.2)

where� = R represents a stream in one dimensional space, u(t, x) is the spatial den-
sity of a population at the point x ∈ � at time t ≥ 0, g(t, u) is the per capita growth
rate at the density u at time t ≥ 0, a(t) is the rate at which an individual leaves its cur-
rent location at time t ≥ 0, or the transfer rate of the population from stationary state
to the mobile state at time t ≥ 0, and k(t, x, y) is the dispersal kernel that describes
the proportion of individuals that moves from point y to point x at time t ≥ 0 and
is not symmetric in x and y. Moreover, we assume that g, a and k are ω-periodic in
t for some ω > 0. In the sense of seasonality variation, ω can be considered as the
length of one year. This model can be derived from a two-stage (mobile and stationary)
population model; see Appendix A.

As first introduced by Aronson and Weinberger (1975) for reaction–diffusion equa-
tions, the asymptotic speed of spread (in short, spreading speed) is an important eco-
logical metric in a wide range of ecological applications. It describes the asymptotic
tendency of the spread or invasion phenomenon of species in spatial habitats and pre-
dicts the long term invasion of a population (see Fig. 2 for population spreading in a
stream environment). It has been extensively investigated for many ecological models
(see, e.g., Liang et al. 2006; Liang and Zhao 2007; Weinberger 1982; Weinberger and
Zhao 2010). Traveling wave solutions have also been studied for a variety of evolu-
tion equations (see, e.g.,Liang et al. 2006; Liang and Zhao 2007; Lutscher et al. 2005;
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Population spread and persistence in streams 407

Weinberger 1982; Weinberger and Zhao 2010; Yagisita 2009), as they represent a kind
of special evolution dynamics.

The drift paradox problem (see, e.g., Müller 1954, 1982) asks how aquatic species
can avoid washout when living in environments with unidirectional flow. Since the
problem was proposed by Müller (1954), one line of research has shown that the drift
paradox relates to the upstream spreading speed for the population and its dependence
on the flow speed. The population will be washed downstream if the water flow speed
is too high, but will persist, i.e., spread to both upstream and downstream, if the water
velocity is relatively low and the reproduction is sufficiently large (Lockwood et al.
2002; Lutscher et al. 2005; Müller 1954, 1982; Pachepsky et al. 2005; Speirs and
Gurney 2001). In this work, we attempt to provide some solutions to the drift paradox
problem via the study of spreading speeds, especially, the upstream spreading speed.

This paper is the sequel to Jin and Lewis (2011), where the seasonal influences on
population invasions have been investigated mathematically from the perspective of
the critical domain size, which is the minimal size of the habitat needed for a species to
persist. The analysis in Jin and Lewis (2011) showed that seasonal variations of pop-
ulation birth, death, transfer from stationary to mobile states, diffusion, settling, and
the flow velocity greatly influence the critical domain size and hence the possibility
of population persistence in a bounded stream.

In this paper, we assume spatially uniform time-dependent asymmetric dispersal so,
at any point in time, dispersal between two locations depends on the signed distance
between them. Thus k is rewritten as k(t, x − y) and Eq. (1.2) becomes

∂u(t, x)

∂t
= u(t, x)g(t, u(t, x))− a(t)u(t, x)+ a(t)

∫
R

k(t, x − y)u(t, y)dy.

(1.3)

For the case where k is independent of time t and symmetric (i.e., k(x) = k(−x)
for any x ∈ R), spreadings speeds and periodic traveling waves for (1.3) have been
studied (Jin and Zhao 2009). As theses assumptions violate a real stream situations,
results are not suitable for a stream species. We start in Sect. 2 by considering upstream
and downstream spreading speeds for our more realistic model. Although spread can
vary on the short times scales between seasons, we consider the year-to-year spread
on longer times scales via a Poincaré map, and determine a formula for calculating the
speed of this spread. We show that, when the dispersal kernel has a moment generating
function, this spread has finite speeds in both upstream and downstream directions and
they coincide with the minimal wave speeds for periodic traveling waves, in both direc-
tions, respectively. We interpret a positive upstream spreading speed as persistence of
the population in the time-periodic river environment. When the moment generating
function does not exist, the population spreads at accelerating speeds and has infinite
spreading speeds. This translates into unconditional persistence in the time-periodic
river environment. Section 3 analyses the spreading speeds in a two-season environ-
ment and obtains the approximate effects of the normalized covariances between the
flow velocity and the transfer rate, the diffusion rate and the settling rate, on the spread-
ing speeds. By this approximation, we see very interesting results about the co-effects,
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in the sense of normalized covariances, of the flow velocity and the transfer rate, the
diffusion rate and the settling rate, on the spreading speeds and population persistence.
In Sect. 4, as we analyze the expressions of spreading speeds for the periodic model
(1.3) and its autonomous case, we find that the spreading speeds are equal to those of
an associated autonomous model which is obtained by averaging the functions g(t, u)
and a(t)k(t, x − y) with respect to t . Moreover, for (1.3) with the dispersal kernel in
(1.1) but constant β, v and D, by comparing the conditions for the critical domain
size to exist in Jin and Lewis (2011) and those for the upstream spreading speed to
be positive in this paper, we see that the conditions for the upstream spreading speed
to be nonnegative in an infinitely long stream are exactly those for the population to
persist in a bounded stream.

2 Spreading speeds and periodic traveling waves

In this section, we will study the upstream and downstream spreading speeds and
the existence of periodic traveling waves for the system (1.3). Firstly, we make some
biologically reasonable assumptions for the model that facilitate the mathematical
analysis of the model:

(H1) (i) g ∈ C(R2+,R) and gu(t, u) < 0 for all (t, u) ∈ R
2+, i.e., the per

capita growth rate g(t, u) decreases with respect to the population den-
sity;

∫ ω
0 g(t, 0)dt > 0, which leads to the instability of the zero solution,

and hence, population with a low density does not become extinct; there
exists û > 0 such that g(t, û) ≤ 0 for all t ≥ 0, i.e., the growth rate is
negative if the population density is over û, and hence, the population will
not explode;

(ii) the transfer rate a(t) > 0 and continuous, that is, transfer occurs continu-
ously during the cycle;

(iii) there exists L̄ > 0 such that |[u1g(t, u1) − a(t)u1] − [u2g(t, u2)

− a(t)u2]| ≤ L̄|u1 − u2| for all t ≥ 0, u1, u2 ∈ W with

W := [0, û],

which implies ug(t, u) − a(t)u is uniformly Lipschitz continuous in
u on W ;

(H2) (i) k(t, x) ≥ 0 for all t ≥ 0, x ∈ R, and
∫
R

k(t, y)dy = 1 for all t ≥ 0,
which mean that the proportion of individuals that moves from one point
to another point is nonnegative and that the total proportion of individuals
that moves from one point to all possible points on the real line should be 1;

(ii) k(t, x) is continuous in t ∈ R uniformly for x in any bounded interval on
R, i.e., the dispersal of the population continuously varies in any bounded
part of the stream;

(iii) the moment generating function

M(t, α) =
∫
R

k(t, y)eαydy
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exists for all α ∈ (−�−,�+) and t ≥ 0 with M(t0,−�−) = ∞ and
M(t1,�+) = ∞ for some t0, t1 ≥ 0, where�± > 0, and −�− and�+ are
the abscissae of convergence and may be infinity, which implies that at any
time t ≥ 0, the dispersal kernel k(t, x) has exponentially bounded tails and
the tails are uniformly bounded for all t ≥ 0; this assumption is later relaxed
in Sect. 2.2 where we consider the possibility of accelerating spread.

Remark The dispersal kernel k defined in (1.1) satisfies (H2) with �− = min
t≥0

{b1(t)}
and �+ = − max

t≥0
{b2(t)}, for positive, periodic and continuous functions v(t), D(t)

and β(t), if x − y is considered as one argument in (1.1).

2.1 Finite spreading speeds and periodic traveling waves

Let C be the set of all bounded and continuous functions from R to R. For any r > 0,
we define Cr := {u ∈ C : 0 ≤ u(x) ≤ r for all x ∈ R}. For u, v ∈ C , we write
u ≥ v(u � v) provided that u(x) ≥ v(x)(u(x) > v(x)) for all x ∈ R, and u > v

provided u ≥ v but u �= v. We equip C with the compact open topology, that is,
vn → v in C means that the sequence of functions vn(x) converges to v(x) uniformly
for x in every compact subset of R. We define the metric function d on C by

d(u, v) :=
∞∑

k=1

max|x |≤k
|u(x)− v(x)|

2k
, ∀u, v ∈ C.

Thus, (C, d) is a metric space and its induced topology is the same as the compact
open topology.

It is not hard to see that the arguments for the well-posedness, monotonicity and
continuity of solutions for the model (1.3) with k being independent of time (i.e.,
k(t, x) = k(x) for all t ≥ 0 and x ∈ R) in Jin and Zhao (2009) are also true for (1.3)
with slight modifications. It then follows from the results in Sect. 2 and Lemma 3.1
in Jin and Zhao (2009) that (1.3) admits a positive ω-periodic solution u∗(t), which
is globally asymptotically stable for all initial values in (0, û] for the spatially homo-
geneous system associated with (1.3), and that (1.3) generates a monotone periodic
semiflow {Qt }t≥0 on C(R,W ), where Qt is defined by

Qt [ϕ](x) := u(t, x;ϕ), ∀x ∈ R, t ≥ 0,

where u(t, x;ϕ) is the solution of (1.3) satisfying u(0, x;ϕ) = ϕ(x) for all x ∈ R.
{Qt }t≥0 is a periodic semiflow in the sense that Q0[ϕ] = ϕ for all ϕ ∈ C(R,W ), that
Qt [Qω[ϕ]] = Qt+ω[ϕ] for all t ≥ 0 and ϕ ∈ C(R,W ), and that Q[t, ϕ] := Qt [ϕ]
is continuous in (t, ϕ) on [0,+∞)× C(R,W ). The continuity of u(t, x;ϕ) in (t, ϕ)
is with respect to the compact open topology. Moreover, Qt [ϕ1] ≥ Qt [ϕ2] for all
t ≥ 0 and ϕ1, ϕ2 ∈ C(R,W ) with ϕ1 ≥ ϕ2. In this section, we use both u(t, x) and
u(t, x;ϕ) to represent a solution to (1.3), where the latter notation specifies the initial
function ϕ.

123



410 Y. Jin, M. A. Lewis

Let Qω be the Poincaré map of (1.3). We can then apply the theories in Liang et al.
(2006), Liang and Zhao (2007) and Weinberger (1982) and follow a similar deriva-
tion as in Jin and Zhao (2009) to obtain the spreading speeds of Qω and hence the
spreading speeds of the periodic semiflow {Qt }t≥0. In the case of�± = ∞, we apply
the theory of spreading speeds for monotone scalar maps in Liang and Zhao (2007)
and Weinberger (1982) to (1.3) to show the existence of the spreading speeds of Qω

in the upstream and downstream directions. In the cases of �− < ∞ or �+ < ∞,
the existence of the spreading speed in the associated direction follows from a similar
limiting argument as in the proof of Proposition 3.4 in Jin and Zhao (2009). The result
is given in the following proposition and the proof is in Appendix B. We can also
follow a similar process as for the theories in Liang and Zhao (2007) and Weinberger
(1982) to obtain the same result.

Proposition 2.1 Assume that (H1) and (H2) hold. Let Qω be the Poincaré map of (1.3).
The spreading speeds of Qω in the downstream (c+

ω ) and upstream (c−
ω ) directions

are, respectively,

c+
ω = inf

0<α<�+

∫ ω
0 (g(s, 0)− a(s))ds + ∫ ω

0 a(s)
∫
R

k(s, y)eαydyds

α
(2.1)

and

c−
ω = inf

0<α<�−

∫ ω
0 (g(s, 0)− a(s))ds + ∫ ω

0 a(s)
∫
R

k(s, y)e−αydyds

α
. (2.2)

Let

c+ = c+
ω

ω
and c− = c−

ω

ω
. (2.3)

By similar arguments to those in Lou and Zhao (2010, Lemma 2.10), we obtain

c+ + c− > 0.

Then by the proof of Liang et al. (2006, Theorem 2.1) with τ = 0, we can obtain the
following theorem.

Theorem 2.1 Assume that (H1) and (H2) hold. Let u(t, x;ϕ) be the solution of (1.3)
with u(0, x;ϕ) = ϕ(x) for all x ∈ R. The following results are valid.

(i) For any c > c+ and c′ > c−, if ϕ ∈ Cu∗(0) with ϕ(x) = 0 for x outside a
bounded interval, then

lim
t→∞, x≥ct

u(t, x;ϕ) = 0, lim
t→∞, x≤−c′t

u(t, x;ϕ) = 0.
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(ii) For any c < c+ and c′ < c−, there is a positive number r ∈ R, such that if
ϕ ∈ Cu∗(0) and ϕ(x) > 0 for x on an interval of length r , then

lim
t→∞,−c′t≤x≤ct

(u(t, x;ϕ)− u∗(t)) = 0.

Remark Theorem 2.1 (i) and (ii) state that c+ and c− are the spreading speeds of
solutions to (1.3) in the downstream and upstream directions, respectively.

According to the analysis in Jin and Zhao (2009), we know that the downstream
spreading speed c+ is always positive. To solve the “drift paradox” problem such that
the population can spread to the upstream, the upstream spreading speed c− has to be
positive (see Fig. 2 for the signs of spreading speeds). By (2.2) and (2.3),

c− > 0 ⇔ inf
0<α<�−

∫ ω
0 (g(s, 0)− a(s))ds + ∫

R

∫ ω
0 a(s)k(s, y)dse−αydy

α
> 0,

which requires
∫ ω

0 (g(s, 0) − a(s))ds and
∫ ω

0 a(s)k(s, y)ds being sufficiently large.
Then to ensure that the population can spread to the upstream, it is necessary to assume
sufficiently large total population growth in a period

∫ ω
0 g(s, 0)ds (or average growth

rate
∫ ω

0 g(s, 0)ds/ω) when the population density is low, and sufficiently small popu-
lation transfer over a period

∫ ω
0 a(s)ds. If the sums of growth and transfer over a period

(i.e.,
∫ ω

0 (g(s, 0)−a(s))ds and
∫ ω

0 a(s)k(s, y)ds) are kept constant, then changing the
period ω does not change the fact that the population will persist or be washed out,
but will change the values of speeds at which the population spreads to the upstream
or downstream.

Recall that u(t, x) = U (t, x + ct) is called an ω-periodic traveling wave of (1.3)
connecting 0 to u∗(t) provided that it is a solution of (1.3), U (t, ξ) is ω-periodic in t ,
and U (t,−∞) = 0 and U (t,∞) = u∗(t) uniformly for t ∈ [0, ω]. In the following,
we further show that the spreading speeds for (1.3) coincide with the minimal wave
speeds of periodic traveling waves for (1.3), in the upstream and downstream direc-
tions respectively. The following theorem gives the nonexistence of periodic traveling
waves for c < c±. We omit the proof here as it is very similar to the proofs of Liang
et al. (2006, Theorem 2.2) and Liang and Zhao (2007, Theorem 4.1).

Theorem 2.2 Assume that (H1) and (H2) hold. Let c± be the spreading speeds of
(1.3) in the downstream and upstream directions, respectively. Then the following two
statements are true.

(i) For any c ∈ (0, c−), system (1.3) admits no continuous ω-periodic traveling
wave solution U (t, x + ct) connecting 0 and u∗(t).

(ii) For any c ∈ (0, c+), system (1.3) admits no continuous ω-periodic traveling
wave solution U (t, x − ct) connecting u∗(t) and 0.

When c ≥ c− or c ≥ c+, since the solution map Qt does not have compactness,
we refer to the theory in Yagisita (2009). After a similar process as in Jin and Zhao
(2009, Section 4) we obtain the existence of left-continuous nondecreasing periodic
traveling waves connecting 0 and u∗(t)when c ≥ c−. For c ≥ c+, introducing x = −z

123



412 Y. Jin, M. A. Lewis

to (1.3) and taking z as the new spatial variable to the new equation, we then obtain
left-continuous nondecreasing periodic traveling waves connecting 0 to u∗(t) for the
new equation, which correspond to right-continuous nonincreasing periodic traveling
waves connecting u∗(t) to 0 for (1.3). The results are stated as follows.

Theorem 2.3 Assume that (H1) and (H2) hold. Let c± be the spreading speeds of
(1.3) in the downstream and upstream directions, respectively. The following results
hold true.

(i) For any c ≥ c−, there exists a function U (t, ξ) defined on R
+ × R such that

U (t, ξ) is differentiable with respect to t , that U (t, ξ) is monotone nondecreas-
ing and left-continuous in ξ , and that U (t, x + ct) is a periodic traveling wave
solution of (1.3) connecting 0 and u∗(t).

(ii) For any c ≥ c+, there exists a function U (t, ξ) defined on R
+ × R such that

U (t, ξ) is differentiable with respect to t , that U (t, ξ) is monotone nonincreas-
ing and right-continuous in ξ , and that U (t, x − ct) is a periodic traveling wave
solution of (1.3) connecting u∗(t) and 0.

2.2 Infinite spreading speeds

In the case that the dispersal kernel does not have a moment generating function, that
is, for any t ≥ 0,

∫
R

k(t, y)eαydy does not converge for any positive or negative α, we
can obtain that the Poincaré map of (1.3) attains infinite spreading speeds c+

ω or c−
ω ,

by studying a limiting process of spreading speeds for (1.3) with kernels km’s defined
as truncations of k(t, x) for m > 0 (see (5.5) for km when

∫
R

k(t, y)eαydy does not
converge for α < 0). Since c+ = c+

ω /ω and c− = c−
ω /ω, we then obtain the existence

of infinite spreading speeds for the system (1.3). The result is stated as follows.

Theorem 2.4 The spreading speed c+ (c−) of (1.3) in the downstream (upstream)
direction is infinity if and only if

∫
R

k(t, y)eαydy = ∞ for all positive (negative) α
and t ≥ 0.

As we know, when the downstream spreading speed is positive, the population
spreads to the downstream, and when the upstream spreading speed is positive, the
population spreads to the upstream. As the condition

∫
R

k(t, y)eαydy = ∞ for all
negative α guarantees infinite upstream spreading speed, it actually guarantees the
persistence of the population in an infinitely long river.

In the following, we approximate the accelerating spread for (1.3) with dispersal
kernel k independent of time t :

∂u(t, x)

∂t
= ug(t, u(t, x))− a(t)u(t, x)+ a(t)

∫
R

k(x − y)u(t, y)dy, (2.4)

where k does not have a moment generating function, that is,
∫
R

k(y)eαydy = ∞ for
all positive and negative α. It follows from Theorem 2.4 that c+ = ∞ and c− = ∞.
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The linearized equation of (2.4) at u = 0 is

∂u(t, x)

∂t
= (g(t, 0)− a(t))u(t, x)+ a(t)

∫
R

k(x − y)u(t, y)dy, ∀t ≥ 0, x ∈ R.

(2.5)

Assume that u(0, x) = u0δ(x), where u0 > 0 and δ(x) is the Dirac delta function.
Further suppose that the dispersal kernel k(x) has finite moments

ζn =
∫
R

xnk(x)dx

for all orders n = 0, 1, 2, . . .. By virtue of the Fourier transform, we can establish an
approximation of the solutions to (2.5) with an initial point source.

Theorem 2.5 The solution to (2.5) with an initial point source of strength u0 satisfies

u(t, x) ∼ u0k(x)e
∫ t

0 g(s,0)ds (2.6)

for |x | � 1, t > 0, provided that

lim|x |→∞

[
1

k(x)

dnk(x)

dxn

]
= 0 (2.7)

uniformly for all n ≥ 0.

Based on Kot et al. (1996, Appendix A), the proof of Theorem 2.5 is given in Appen-
dix C. Then we can estimate the speeds of spread for the linearized equation (2.5) in
both upstream and downstream directions, by the approximation (2.6). If we consider
that the spreading speeds for (2.4) can be linearly determined, this estimation can also
be taken as the approximation to the speeds of spread for (2.4). This is shown in the
following example.

Example Consider g(t, u) = (2 − u)(1 + sin(t)) and a(t) = 1 + sin(t). Then g and
a are periodic functions in t with a period 2π . Define

k(x) =
{

A1e−B1
√−x , x ≤ 0,

A2e−B2
√

x , x > 0,
(2.8)

with A1/B2
1 +A2/B2

2 = 1/2. Then
∫
R

k(x)dx = 1; k does not have the moment gener-
ating function, but has finite moments ζn = ∫

R
xnk(x)dx for all orders n = 0, 1, 2, . . ..

Moreover, k satisfies (2.7). Let the initial function be

u(0, x) = u0δ(x)
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Fig. 3 The extents x±
t and speeds of spread x±

t /t for (2.5), based on the exact solution to (2.5) and the
approximation (2.6). Here g(t, u) = (2 − u)(1 + sin(t)) and a(t) = 1 + sin(t), and k(x) is defined in
(2.8) with A1 = A2 = 1/2, B1 = 2, B2 = 2/

√
3. The initial function for the exact solution to (2.5) is

defined in (2.9) with space step �x = 0.5 and u0 = 1; the initial function for the approximation (2.6) is
u(0, x) = u0δ(x)with u0 = 1. The extent threshold ū is 0.01. The solid curves represents extents or speeds
obtained from the exact solution to (2.5); the dash curves represents extents or speeds obtained from the
approximation (2.6)

with u0 > 0. Define the extent xt of a population as the distance from the source where
the population first falls below a given sufficiently small threshold, ū (see, e.g., Kot
et al. 1996). By (2.6), the extents for a solution to (2.5) are approximately

x−
t = − (ln(

ū
u0 A1

)− 2t + 2cos(t)− 2)2

B2
1

, x+
t = (ln( ū

u0 A2
)− 2t + 2cos(t)− 2)2

B2
2

,

in the upstream and downstream directions, respectively. Consider x±
t /t as the speeds

that the population spreads to downstream and upstream. The extents x±
t and speeds

of spread x±
t /t are shown as functions of t in Fig. 3. We see that both the extents and

the speeds of spread increase in time.

On the other hand, we also obtain the exact solution to (2.5) with above settings
except the initial value. Note that δn(x) := N (0, 1/n), which is the normal distribu-
tion with mean 0 and variance 1/n, satisfies limn→∞ δn(x) = δ(x) as n → ∞. In the
numerical simulation, to approximate the initial function u0δ(x) used above for (2.5),
we assume the initial function as

u(0, x) =
{ u0
�x , if x = 0,
0, otherwise,

(2.9)

where �x is the spatial space step size. The extents x±
t and the approximate speeds

x±
t /t as functions of t are also shown in Fig. 3. It clearly indicates that if the dispersal

kernel does not have the moment generating function but has finite moments, then
the population spreads to the downstream and upstream at accelerating speeds. This
verifies Theorem 2.4. Comparing x±

t and x±
t /t for (2.5) from the exact solutions and
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the approximation (2.6), we also see from Fig. 3 that (2.6) underestimates the speeds
of spread for the population, but at least it provides a lower bound for the spread.

3 Spreading speeds in a two-season environment

In this section, we give approximation for upstream and downstream spreading speeds
of a population in a two-season environment, and study the combined influences of
the flow velocity and the transfer rate, the diffusion coefficient and the settling rate
on the spreading speeds in upstream and downstream directions. By a two-season
environment, we mean a habitat, which has two significant seasons in a year, such
as summer and winter, in either of which the population has distinct dispersal and
growth function. In the following analysis, we simply assume that a year length is ω
with summer length about ω0 and winter length about ω − ω0 (0 < ω0 < ω).

3.1 Approximations for spreading speeds

We would like to consider upstream and downstream spreading speeds in a two-sea-
son environment with dispersal kernel k1 and transfer rate a1 in summer and dispersal
kernel k2 and transfer rate a2 in winter. An abrupt change between seasons will violate
the assumption (H1) (i)–(ii) and (H2) (ii) that a and k are continuous functions of
time t . Hence, we need to approach the discontinuous dispersal kernel and transfer
rate carefully as limits of sequences of continuous (in time) kernels and transfer rates,
respectively.

First, we give a theoretical result for the approximation of spreading speeds. Assume
that k1(x) and k2(x) are two dispersal kernels and the maximal interval over which both
moment generating functions M1(α) = ∫

R
k1(x)eαx dx and M2(α) = ∫

R
k2(x)eαx dx

exist is (−�−,�+). Let {k(n)(t, x)}n∈N be a sequence of dispersal kernels which are
periodic in t and defined on [0, ω] as

k(n)(t, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k1(x) 0 ≤ t < ω0 − 1
n , x ∈ R,

k(n)1 (t, x) ω0 − 1
n ≤ t < ω0, x ∈ R,

k2(x) ω0 ≤ t < ω − 1
n , x ∈ R,

k(n)2 (t, x) ω − 1
n ≤ t < ω, x ∈ R,

(3.1)

where k(n)1 and k(n)2 are functions that patch together k1 and k2 over the transitive
seasons of length under 1/n so as to ensure that k(n) varies continuously with time as
well as satisfying all other assumptions given in (H2). Moreover, as k(n)(t, x) is con-
tinuous in t uniformly for x in any bounded interval on R, without loss of generality,
we assume that

min{k1(x), k2(x)} ≤ k(n)i (t, x) ≤ max{k1(x), k2(x)} (3.2)
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for all i = 1, 2, t ∈ [0, ω] and x ∈ R. Similarly, let {a(n)(t)}n∈N be a sequence of
transfer rates, which are periodic in t and defined in [0, ω] as

a(n)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1 0 ≤ t < ω0 − 1
n ,

a(n)1 (t) ω0 − 1
n ≤ t < ω0,

a2 ω0 ≤ t < ω − 1
n ,

a(n)2 (t) ω − 1
n ≤ t < ω,

(3.3)

where a(n)1 (t) and a(n)2 (t) are such that a(n)(t) is continuous in time t for each n ∈ N.
We then have the following result with proof in Appendix D.

Theorem 3.1 Assume that (H1) and (H2) hold for (1.3) with dispersal kernel k(n)(t, x)
defined in (3.1) and transfer rate a(n)(t) defined in (3.3) and that c±

n are the down-
stream and upstream spreading speeds for (1.3), respectively, for each n ∈ N. Then
the following approximations are valid.

c+
n → inf

0<α<�+

∫ ω
0 g(s, 0)ds + a1ω0(M1(α)− 1)+ a2(ω − ω0)(M2(α)− 1)

αω
,

c−
n → inf

0<α<�−

∫ ω
0 g(s, 0)ds + a1ω0(M1(−α)− 1)+ a2(ω − ω0)(M2(−α)− 1)

αω

(3.4)

as n → ∞.

Thus, downstream and upstream spreading speeds in the two-season environment
can be approximated by the simple formulae given in Eq. (3.4).

Remark 1 From the proof of Theorem 3.1 (Appendix D) we see that condition (3.2)
can be relaxed to any condition such that

M (n)(t, α) =
∫
R

k(n)(t, x)eαx dx

has a uniform bound for t ∈ [0, ω], α ∈ (−�−,�+) and all n ∈ N.

Remark 2 In fact, we can further show that the two limits in (3.4) are the downstream
and upstream spreading speeds, respectively, of the system (1.3) with k and a defined as

k(t, x) =
{

k1(x) 0 ≤ t < ω0, x ∈ R,

k2(x) ω0 ≤ t < ω, x ∈ R,
and a(t) =

{
a1 0 ≤ t < ω0,

a2 ω0 ≤ t < ω.

In this case, the periodic semiflow {Qt }t≥0 and Poincarè map Qω associated with (1.3)
are also well defined and continuous. Then we can still apply the theories in Liang et al.
(2006), Liang and Zhao (2007) and Weinberger (1982) and follow a similar derivation
as in Jin and Zhao (2009) to obtain the existence of the spreading speeds of Qω and
hence the spreading speeds of the periodic semiflow. The linear operator approach in
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Liang and Zhao (2007) can still be applied as in Jin and Zhao (2009), so the formulae
of the spreading speeds in the downstream and upstream directions can be obtained.
They are exactly the two limits in (3.4). All the arguments are similar to those in Jin
and Zhao (2009) and Sect. 2 in this paper.

Now we consider a stream species in a two-season environment. The population
growth rate and dispersal patterns are typically different in summer and winter due
to very different temperature, food sources, flow discharge, and some other seasonal
varying features, while they experience small perturbations around the summer or
winter states in spring or fall. As the spring and fall time are assumed to be very short
compared to the other two seasons, the spreading speeds of the species in the upstream
and downstream directions can be approximated from the population dynamics and
dispersal in summer and winter time, via the approximations in Theorem 3.1. That is,
we may use (3.4) to approximate the spreading speeds for (1.3) rather than calculating
them via (2.1)–(2.3), if the dispersal kernel k(t, x) and the transfer rate a(t) in (1.3)
take the form of k(n)(t, x) (defined in (3.1)) and a(n)(t) (defined in (3.3)), respectively.

We now consider the class of exponential kernels of the form given in Eq. (1.1).
In the following text, for all parameters except g(t, x), we use subscript i = 1 to
represent summer and i = 2 to represent winter. Let the summer and winter dispersal
kernels ki ’s be in the form

ki (x) =
{

Ai exp(b(1)i x), x ≤ 0,
Ai exp(b(2)i x), x ≥ 0,

with

b(1),(2)i = vi

2Di
±
√
v2

i

4D2
i

+ βi

Di

and

Ai = b(1)i b(2)i

b(2)i − b(1)i

,

where Di , vi and βi are the diffusion coefficient, the water flow velocity, and the
settling rate of a species in a stream environment. These constants are nonnegative
and can be considered as the averages of the related variables in summer or winter.
For i = 1 or 2, the moment generating function of ki

Mi (α) =
∫
R

ki (y)e
αydy = βi

βi − αvi − α2 Di

exists provided that −b(1)i < α < −b(2)i . Let �− = min{b(1)1 , b(1)2 } and �+ =
min{−b(2)1 ,−b(2)2 }. Then (−�−,�+) is the largest interval where both M1(α) and

123



418 Y. Jin, M. A. Lewis

M2(α) exist. Moreover, we assume that the transfer rate is a1 in summer and a2 in
winter where ai ’s are nonnegative and may represent the average of the transfer rate
in summer or winter. It follows from Theorem 3.1 that the downstream and upstream
spreading speeds can be approximated by

c+ ≈ inf
0<α<�+

∫ ω
0 g(s, 0)ds + a1ω0(M1(α)− 1)+ a2(ω − ω0)(M2(α)− 1)

αω

(3.5)

and

c− ≈ inf
0<α<�−

∫ ω
0 g(s, 0)ds + a1ω0(M1(−α)− 1)+ a2(ω − ω0)(M2(−α)− 1)

αω

(3.6)

respectively.

3.2 Influences of parameters on spreading speeds

In the following, we will study the combined influences of the flow velocity and the
transfer rate, the diffusion coefficient and the settling rate on the spreading speeds in
upstream and downstream directions via the approximations (3.5) and (3.6).

First, assume that the diffusion constant and settling rate in a year are constants,
i.e., D2 = D1 ≡ D and β2 = β1 ≡ β, and consider how the transfer rate ai ’s and
the flow velocity vi ’s influence the spreading speeds. Here D and β can be taken as
the average over a year. In reality, we may expect higher flow velocity in summer and
lower flow velocity in winter (i.e., v1 > v2 ≥ 0) according to the variation of water
discharge, but we will not restrict our analysis to this assumption. An example of a
and v is shown in Fig. 4.

Note that although the transfer rate a(t) varies in summer and winter, in a long run,
its yearly mean value may oscillate around some constant quantity. So does the water
flow velocity v(t). Therefore, we fix the mean values

ā = 1

ω

ω∫
0

a(s)ds = a1ω0 + a2(ω − ω0)

ω
, (3.7)

and

v̄ = 1

ω

ω∫
0

v(s)ds = v1ω0 + v2(ω − ω0)

ω
, (3.8)

of the transfer rate a(t) and the flow velocity v(t) and vary ai ’s and vi ’s to see how the
variations of them influence the spreading speeds. We assume, unless stated otherwise,
that a2 �= a1 and v2 �= v1.
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Fig. 4 Left An example of the transfer rate a(t) and flow speed v(t) in a two season environment, where a
year length is ω = 2, summer length is ω0 = 1, the annual mean of transfer rate is ā = 2 and the annual
mean of flow speed is v̄ = 2. The solid line represents a(t) and the dash line represents v(t). Right The
projection of the normalized covariance χa,v between the transfer rate a and flow velocity v on the a − v

plane, where ā = 2, v̄ = 2, a2 is the winter transfer rate and v2 is the winter flow velocity. The contour
lines show the value levels of χa,v

To investigate the cross-effects of transfer rate a(t) and water flow velocity v(t) on
the spreading speeds c±, we define the covariance between the normalized transfer
rate a/ā and flow velocity v/v̄ over a year as

χa,v = cov(
a

ā
,
v

v̄
) = 1

āv̄ω

ω∫
0

(a(s)− ā)(v(s)− v̄)ds (3.9)

where cov(a, v) is the covariance between a and v defined as

cov(a, v) = 1

ω

ω∫
0

(a(s)− ā)(v(s)− v̄)ds.

Note that χa,v is a dimensionless quantity but has the same sign as the covariance
cov(a, v) between a and v. Moreover, calculations show that

χa,v = ω0(ω − ω0)(v2 − v1)(a2 − a1)

ω2āv̄
, (3.10)

which implies that χa,v is positive provided that a2 −a1 and v2 −v1 have the same sign
and negative if they have opposite signs. For fixed ā and v̄, the relationship between a2,
v2 and χa,v is shown in Fig. 4. In the following, without confusion, we also call χa,v

the normalized covariance between the transfer rate a and the flow velocity v, as the
mean values ā and v̄ are kept as constants. This is also true for the other covariances
we will introduce later.
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It follows from (3.5), (3.7) and (3.10) that

c+

≈ inf
0<α<�+

∫ ω
0 g(s, 0)ds + a1ω0(M1(α)− 1)+ a2(ω − ω0)(M2(α)− 1)

αω

= inf
0<α<�+

∫ ω
0 g(s, 0)ds − āω + (āω − a2(ω − ω0))M1(α)+ a2(ω − ω0)M2(α)

αω

= inf
0<α<�+

∫ ω
0 g(s, 0)ds − āω + āωM1(α)+ a2(ω − ω0)(M2(α)− M1(α))

αω

= inf
0<α<�+

∫ ω
0 g(s, 0)ds + āω(M1(α)− 1)+

(
ā(ω − ω0)+ χa,v āv̄ω

(v2−v1)

)
(M2(α)−M1(α))

αω
.

(3.11)

For α ∈ (0,�+), let

c+
α =

∫ ω
0 g(s, 0)ds + a1ω0(M1(α)− 1)+ a2(ω − ω0)(M2(α)− 1)

αω
. (3.12)

Then c+ ≈ inf
0<α<�+

c+
α and

dc+
α

dχa,v
= āv̄(M2(α)− M1(α))

α(v2 − v1)
> 0

for 0 < α < �+ since M2(α) − M1(α) and v2 − v1 have the same sign for 0 < α

< �+ and all the other quantities are positive. Therefore, the downstream spreading
speed c+ is an increasing function of the normalized covariance χa,v between the
transfer rate a and flow velocity v, provided that summer flow velocity v1, the winter
flow velocity v2 and the mean value ā of the transfer rate a(t) over a year are fixed.
Similarly, we can approximate the upstream spreading speed c− as

c− ≈ inf
0<α<�−

∫ ω
0 g(s, 0)ds + a1ω0(M1(−α)− 1)+ a2(ω − ω0)(M2(−α)− 1)

αω

(3.13)

and define

c−
α =

∫ ω
0 g(s, 0)ds + a1ω0(M1(−α)− 1)+ a2(ω − ω0)(M2(−α)− 1)

αω

for α ∈ (0,�−). Then we obtain that c− is a decreasing function of χa,v provided
that v1, v2 and ā are fixed.

Moreover, we consider a river with given summer flow velocity v1 and winter
flow velocity v2 and assume that the annual average of a species’ transfer rate ā is a
constant. It follows from (3.11) that when v2 − v1 and a2 − a1 have the same sign,
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Fig. 5 Left The relationship between the spreading speeds and the normalized covariance χa,v between
the transfer rate a and flow velocity v, where g(t, u) = 1.2(1 − u/K )− 0.5, β2 = β1 = 1, D2 = D1 = 1,
ω = 2, ω0 = 1, v1 = 3, v2 = 1, ā = 2, χ0

a,v = −0.107375. Right The persistence areas for the population
on the a2 − v2 plane. Here, g(t, u) = 1.2(1 − u/K )− 0.5, β2 = β1 = 1, D2 = D1 = 1, ω = 2, ω0 = 1,
v̄ = 2, and ā = 2. The circle point “A” in the left graph corresponds to the circle point “A” in the right
graph

the smaller the absolute difference between the summer transfer rate a1 and the win-
ter transfer rate a2 is, the smaller the downstream spreading speed is and the bigger
the upstream spreading speed is; when v2 − v1 and a2 − a1 have the opposite signs,
the smaller the absolute difference between a1 and a2 is, the bigger the downstream
spreading speed is and the smaller the upstream spreading speed is. In other words the
population has a higher chance of persistence or spatial spread when yearly transfer
rate patterns do not follow flow rate patterns and a lower chance of persistence or
spatial spread when they do follow flow rate patterns.

Example 3.1 Assume the growth function g(t, u) = r(1−u/K )−μwith the intrinsic
growth rate r = 1.2, death rate μ = 0.5 and carrying capacity K > 0, which does not
influence the spreading speeds, the scaled length of a year ω = 2, the summer length
of a year ω0 = 1, the diffusion rate D2 = D1 = 1, the settling rate β2 = β1 = 1, the
mean value of the flow velocity v̄ = 2 and the mean transfer rate ā = 2.

For summer flow velocity v1 = 3 and winter velocity v2 = 1, the upstream and
downstream spreading speeds as a function of the normalized covariance χa,v are
shown in the left graph of Fig. 5. When χa,v increases, the downstream spreading
speed is always positive and increases, while the upstream spreading speed decreases
from positive to negative. Note that for our definition of the upstream spreading speed
in this paper, positive values of the upstream spreading speed indicate population’s
spreading to upstream and negative values indicate population’s spreading to down-
stream. We say that the larger the normalized covariance between a and v is, the easier
for the population to be washed out and the harder for the population to persist in the
stream.

If we describe the persistence of the population by c− > 0 and nonpersistence by
c− < 0, then the areas for persistence and nonpersistence on the a2−v2 plane is shown
in the right graph of Fig. 5. In this figure, the annual averages of the flow velocity and
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Fig. 6 Left The relationship between the spreading speeds and the normalized covariance χD,v between
the flow velocity v and diffusion coefficient D. Here g(t, u) = 0.75(1 − u/K ) − 0.5, β2 = β1 = 1,
a2 = a1 = 1, v1 = 3, v2 = 1, ω = 2, ω0 = 1, and D̄ = 2, χ0

D,v = −0.152525. Right The persistence
areas for the population on the D2 − v2 plane. Here g(t, u) = 0.75(1 − u/K ) − 0.5, β2 = β1 = 1,
a2 = a1 = 1, ω = 2, ω0 = 1, v̄ = 2, and D̄ = 2. The circle point “A” in the left graph corresponds to the
circle point “A” in the right graph

the population transfer rate are fixed as v̄ = 2 and ā = 2. If the winter flow velocity v2
is between 1.5 and 2.5, then the population cannot persist in the stream no matter what
constant a(t) is in summer or winter. When v2 is less than 1.5 or greater than 2.5, it is
possible that the population persists in the stream if a(t) is the constant ā in the whole
year but is washed out if a(t) experiences oscillations in a year (i.e., a(t) �≡ ā) (see
e.g., v2 = 0.5); it is also possible that the population is washed out when a(t) ≡ ā
but is persistent in the stream when a(t) �≡ ā (see e.g., v2 = 1). Therefore, if the flow
velocity oscillates close to its annual average, then it is easier for the population to be
washed out, while if the flow velocity has big oscillation around its average, then it
might be possible to adjust the population’s transfer rate to help the population persist
in the stream.

We also study the co-effects of the flow velocity v(t) and the diffusion rate D(t)
or the settling rate β(t) on the spreading speeds. Similar as in (3.7), (3.8) and (3.9),
we can define mean values of D(t) and β(t) as D̄ and β̄, the normalized covariance
χD,v between the flow velocity v and diffusion coefficient D, and the normalized
covariance χβ,v between the flow velocity v and settling rate β. However, in these
cases, the signs of dc±

α /dχD,v and dc±
α /dχβ,v depend on not only the sign of v2 − v1,

but also χD,v and χβ,v themselves and the other parameter relations. They can change
signs when v0, v1 and D̄ or β̄ are fixed. This can be seen from the following examples.

Example 3.2 g(t, u) = 0.75(1 − u/K ) − 0.5, β2 = β1 = 1, a2 = a1 = 1, ω = 2,
ω0 = 1, v̄ = 2 and D̄ = 2. For v1 = 3 and v2 = 1, the relation between the
spreading speeds c± and the normalized covariance χD,v between v and D is shown
in Fig. 6. For these given vi ’s, c+ is an increasing function of χD,v and c− decreases
from positive to negative as χD,v increases. Therefore, in this case, if the normal-
ized covariance between v and D is large and negative, the population spreads to the
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Fig. 7 Left The relation between the spreading speeds and the normalized covarianceχβ,v between the flow
velocity v and settling rate β. Here g(t, u) = 0.75(1 − u/K )− 0.5, a2 = a1 = 1, D2 = D1 = 1, ω = 2,
ω0 = 1, v1 = 3, v2 = 1, β̄ = 2.5, χ1

β,v = −0.0631, χ2
β,v = 0.35282. c− < 0 when −0.5 < χβ,v < χ1

β,v

or χ2
β,v < χβ,v < 0.5; c− > 0 when χ1

β,v < χβ,v < χ2
β,v . Right The persistence areas for the population

on the β2 − v2 plane, where g(t, u) = 0.75(1 − u/K )− 0.5, a2 = a1 = 1, D2 = D1 = 1, ω = 2, ω0 = 1,
v̄ = 2, and β̄ = 2.5. The circle points “A” and “B” in the left graph correspond to the circle points “A”
and “B” in the right graph

upstream and persists in the stream, while if it is positive, the population only spreads
to the downstream and is eventually washed out.

Example 3.3 g(t, u) = 0.75(1 − u/K ) − 0.5, D2 = D1 = 1, a2 = a1 = 1, ω = 2,
ω0 = 1, v̄ = 2 and β̄ = 2.5. For v1 = 3 and v2 = 1, the relation between the
spreading speeds c± and the normalized covariance χβ,v between v and β is shown
in Fig. 7. Here c+ decreases first and then increases but is always positive, while c−
increases first and then decreases. As χβ,v increases from negative to positive values,
c− changes from negative to positive, and to negative again. This indicates that, for
the population to spread upstream and hence to persist in the stream, χβ,v must neither
be very small nor very large.

We also obtain the persistence areas for the population on the D2 − v2 and β2 − v2
planes, respectively, for Examples 3.2 and 3.3 (see the right graphs of Figs. 6 and 7).
The persistence areas on the D2 − v2 plane is similar to that on the a2 − v2 plane, so
we may have similar interpretations as before. Figure 7 shows that when v̄ = 2 and
β̄ = 2.5 are fixed, if the flow velocity in a year (mainly summer and winter) oscillates
around its annual mean value v̄, then it is impossible for the population to spread that
for certain winter flow velocity (e.g., v2 = 1), the winter settling rate should not be
too small or too large so that the population can spread upstream and hence persist in
the stream. We change the diffusion rate in Example 3.3 to D1 = D2 = 2 and obtain
a very different graph for persistence areas on the β2 − v2 plane in Fig. 8. It shows
that for almost all possible winter flow velocity v2, the population can persist in the
stream provided that the winter settling rate β2 is not very large.

In summary, we investigated the effects on persistence of normalized temporal
covariances between flow rate v and the following model parameters: transfer rate
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Fig. 8 Left The relation between the spreading speeds and the normalized covariance χβ,v between the
flow velocity v and settling rate β. Here g(t, u) = 0.75(1 − u/K ) − 0.5, a2 = a1 = 1, D2 = D1 = 2,
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β,v

or χ2
β,v < χβ,v < 0.5; c− > 0 when χ1

β,v < χβ,v < χ2
β,v . Right The persistence areas for the population

on the β2 − v2 plane, where g(t, u) = 0.75(1 − u/K )− 0.5, a2 = a1 = 1, D2 = D1 = 2, ω = 2, ω0 = 1,
v̄ = 2, and β̄ = 2.5. The circle points “A” and “B” in the left graph correspond to the circle points “A”
and “B” in the right graph

between growth and dispersal classes a, diffusion coefficient D, and settling rate β.
On average, high flow rates have a tendency to wash resident populations down stream.
Hence, a strategy that reduces transfer to the dispersal class when flow rates are high
will ameliorates dispersal loss. Thus large χa,v leads to washout while small χa,v can
allow for persistence (Fig. 5). When it comes to random movement via diffusion, a
strategy that maximizes upstream dispersal when it likely to most effective (i.e., when
it is not overpowered by high flow rates) will help ensure species persistence. Thus
large χD,v leads to washout while small χD,v can allow for persistence (Fig. 6). The
pattern is the same as the one for transfer rate, given previously, although for a dif-
ferent reason. Finally, a low settling rate β will simultaneously enhance the effects of
flow v and diffusion D whereas a high settling rate β will simultaneously diminish the
effects. Persistence requires a diminishment of the effects of flow to prevent washout,
and an enhancement of the effects of diffusion to allow for upstream spread. Hence
the overall impact of χβ,v on persistence is subtle, and depends upon the diffusion
levels D. However, as an overall principle, intermediate settling rates enhance the like-
lihood persistence, whereas high or low rates diminish the likelihood of persistence
(Figs. 7 and 8).

Recall that in the earlier work on critical domain size (Jin and Lewis 2011), we
obtained the relationship between normalized covariances χa,v , χD,v and χβ,v , and
the critical domain size for Examples 3.1–3.3 but in a bounded stream. It was shown
that the critical domain size exists for χa,v < χ0

a,v in Example 3.1, for χD,v < χ0
D,v

in Example 3.2, and for χ1
β,v < χβ,v < χ2

β,v in Example 3.3. This indicates that the
normalized covariance values (χa,v , χD,v and χβ,v) such that the critical domain size
(in a bounded stream) tends to infinity are exactly the values such that the upstream
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spreading speed (in an infinitely long stream) tends to 0 from positive values. Note that
the upstream spreading speed c− is positive if the population spreads to the upstream
and c− is negative if it spreads to the downstream (see Fig. 2). The above result then
provides evidence for the contention that a result given by Lutscher et al. (2010) for
temporally constant environments may be extended to temporally variable environ-
ments. That is, a stream species can persist in a bounded stream only if it has a positive
upstream spreading speed in an infinitely long stream and, as the length of the stream
becomes infinite, conditions for persistence approach those for a nonnegative upstream
spreading velocity.

4 Discussion

This paper is the sequel to the paper (Jin and Lewis 2011), which focused on the
study of the critical domain size of a periodic integro-differential equation (1.2) with
� = [0, L] for species in a seasonally varying stream. We reconsider the model here
to investigate the seasonal influences on the population spread and dispersal in streams
and rivers. Again, we assume that the population dynamics and the dispersal kernel
are periodic functions with respect to time t with the same period ω, which can be
taken as the scaled length of a year. Moreover, the dispersal between two locations
is assumed to depend on the signed distance between them, i.e., the kernel is written
as k(t, x) and the model becomes (1.3). We study the spreading speeds and periodic
traveling waves in an infinitely long stream, and attempt to solve the drift paradox
problem by finding conditions for the upstream spreading speed to be positive. It turns
out that the time-varying population dynamics and movements do affect the invasions
and persistence of a species in streams. However, it is not exactly the population
dynamics and movements themselves (g(t, u), a(t) and k(t, x)), but the (weighted)
sums (

∫ ω
0 g(t, 0)dt ,

∫ ω
0 a(t)dt ,

∫ ω
0 a(t)k(t, x)dt), that actually play an import role in

the invasions of a species. This can be seen from the formulae of the spreading speeds
(see (2.1) and 2.2)). When the environment is considered to have two main seasons,
e.g., summer and winter, the spreading speeds are approximated and the effects of the
normalized covariances of the flow velocity and the transfer rate, the diffusion rate,
and the settling rate, on the spreading speeds and population persistence have been
investigated. Compared to numerical results for Examples 3.1–3.3 in Jin and Lewis
(2011), we see that the condition for the species to spread upstream in an infinitely
long stream is exactly the same as the condition for the species to have some positive
critical domain size in a bounded stream.

In the assumption (H2)(iii), we assume that the moment generating function M(t, α)
satisfies M(t0,−�−) = ∞ and M(t1,�+) = ∞ for some t0, t1 ≥ 0. It is used to
govern that the infima in (2.1) and (2.2) are taken in the interior of (0,�−) and
(0,�+). In fact, if�− = ∞ or�+ = ∞, this can be proved as in the proof of Jin and
Zhao (2009, Proposition 3.4), so this assumption is actually only applied when�− or
�+ is finite. In the case that �− or �+ is finite but the infimum in (2.1) or (2.2) is
taken at �− or �+, we expect that the expressions for the spreading speeds are still
true by adapting the process in Weinberger and Zhao (2010) for an integro-difference
equation. However, it is not addressed here in this paper.
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In the following two subsections, we give two further observations based on the
results in this paper and Jin and Lewis (2011).

4.1 Spreading speeds for the periodic model (1.3) and associated autonomous models

We find an interesting relationship between the periodic model (1.3) and the associ-
ated autonomous models. It follows from Theorem 2.1 that for the autonomous case
of (1.3) with asymmetric dispersal kernel

∂u(t, x)

∂t
= u(t, x) f (u(t, x))− ςu(t, x)+ ς

∫
R

k(x − y)u(t, y)dy, (4.1)

if f , ς and k satisfy corresponding conditions for g, a and k in (H1) and (H2), then the
spreading speeds for (4.1) in the downstream and upstream directions are, respectively,

c+
0 = inf

0<α<�+

f (0)− ς + ς
∫
R

k(y)eαydy

α
(4.2)

and

c−
0 = inf

0<α<�−

f (0)− ς + ς
∫
R

k(y)e−αydy

α
. (4.3)

Similarly, for the model (2.4) where the dynamics are time-periodic but the dispersal
kernel does not vary with time, the spreading speeds are

c+ = 1

ω
inf

α∈(0,�+)

∫ ω
0 (g(s, 0)− a(s))ds + ∫ ω

0 a(s)ds
∫
R

k(y)eαydy

α
(4.4)

and

c− = 1

ω
inf

α∈(0,�−)

∫ ω
0 (g(s, 0)− a(s))ds + ∫ ω

0 a(s)ds
∫
R

k(y)e−αydy

α
, (4.5)

in the downstream and upstream directions, respectively. Define an autonomous model
associated with (2.4) as

∂u(t, x)

∂t
= u(t, x)

∫ ω
0 g(s, u)ds

ω
−
∫ ω

0 a(s)ds

ω
u(t, x)

+
∫ ω

0 a(s)ds

ω

∫
R

k(x − y)u(t, y)dy. (4.6)

Comparing the Eqs. (4.1) and (4.6), we can easily write the spreading speeds for (4.6)
and then find that the spreading speeds for the periodic model (2.4) are equal to those
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for the autonomous model (4.6), in the downstream and upstream directions, respec-
tively. Define a weighted time-averaged dispersal kernel K(x − y) for the dispersal
kernel k(t, x − y) as

K(x − y) :=
ω∫

0

a(s)∫ ω
0 a(ξ)dξ

k(s, x − y)ds, ∀x, y ∈ R. (4.7)

Here the weighting is given by the normalized transfer rate. We rewrite the expressions
of c+ and c− in (2.1)–(2.3) for (1.3) in the form of K(x − y) as

c+ = inf
0<α<�+

1
ω

∫ ω
0 (g(s, 0)− a(s))ds + 1

ω

∫ ω
0 a(s)ds

∫
R

K(y)eαydy

α
(4.8)

and

c− = inf
0<α<�−

1
ω

∫ ω
0 (g(s, 0)− a(s))ds + 1

ω

∫ ω
0 a(s)ds

∫
R

K(y)e−αydy

α
. (4.9)

Comparing (4.8) and (4.9) with (4.4) and (4.5), we see that the spreading speeds
for (1.3) are the same as those for (2.4) with the time-averaged weighted dispersal
kernel K, in the downstream and upstream directions, respectively.

It follows from above analysis that, to study the spreading speeds for (1.3), it suf-
fices to study those for (2.4) with the weighted time-averaged dispersal kernel K, for
which it only suffices to study the spreading speeds for the time-averaged model (4.6)
with K. Then we conclude that when studying the spreading speeds for a periodic in-
tegro-differential equation, a periodic dispersal kernel k(t, x − y) has the same effect
as its associated weighted time-averaged dispersal kernel K(x − y); moreover, the
study of spreading speeds for a periodic integro-differential equation can be reduced
to the study of spreading speeds for its weighted time-averaged autonomous integro-
differential equation. However, it is important to note that this simplification can only
be applied for the estimation of spreading speeds. There is no hint that local or global
dynamics of these models are the same.

Therefore, the influences of the time-variations of population dynamics and dis-
persal features on the invasions can be time-averaged providing the averaging uses
the appropriate weighting. Significant changes of population dynamics or dispersal
features (g(t, u), a(t), and k(t, x − y)) at a few times may not influence the long-term
invasions of a species as long as the changes of their totals (

∫ ω
0 g(t, 0)dt ,

∫ ω
0 a(t)dt

and K(x − y)) can be neglected. In more details, if the dispersal kernel is independent
of time, then it is the sums of population dynamics and transfer rate over a period,
other than their values at specific times, besides the kernel, that influence the spreading
speeds; if the dispersal kernel is a time-periodic function, then besides the sums of
population dynamics and transfer rate over a period, the time-averaged weighted dis-
persal kernel plays an important role for the spreading speeds. Note that this averaged
kernel is not just the average of the original kernel over a period, but the weighted
average of the original kernel and the transfer rate. Thus, when the dispersal kernel is
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time-dependent, it is not as intuitive as it might seem to see the effects of the kernel
and the transfer rate on the spreading of the population.

4.2 Population persistence in bounded and infinitely long streams

As both this paper and the paper (Jin and Lewis 2011) focus on the invasions of a
population in streams whether infinitely long or bounded in different perspectives, we
are interested in the connection between the results in these two papers. In particular,
we hope to build relationship between the persistence of a population in a bounded
stream and the upstream spreading speed of the population in an infinitely long stream.

Consider (1.3) in a bounded stream, i.e.,

∂u(t, x)

∂t
= u(t, x)g(t, u(t, x))− a(t)u(t, x)+ a(t)

∫
�

k(t, x − y)u(t, y)dy

(4.10)

with � = [0, L] where L > 0. Jin and Lewis (2011, Theorem 2.3) implies that if∫ ω
0 g(s, 0)ds ≥ ∫ ω

0 a(s)ds, then the population persists in the stream no matter what
the length of the stream is; if

∫ ω
0 g(s, 0)ds <

∫ ω
0 a(s)ds, then the critical domain size

L can be obtained by solving the threshold condition

λ(L) = 1 −
∫ ω

0 g(s, 0)ds∫ ω
0 a(s)ds

,

where λ is the principal eigenvalue of the operator I defined as

I [ψ](x) :=
L∫

0

K(x − y)ψ(y)dy, ∀x ∈ [0, L], ∀ψ ∈ C([0, L],W )

with K defined in (4.7), and hence, the population can persist in the stream provided
that the stream length is larger than the critical domain size.

Clearly, it follows from (2.2) that if
∫ ω

0 g(s, 0)ds >
∫ ω

0 a(s)ds, then the upstream
spreading speed c− for (1.3) is positive and that if

∫ ω
0 g(s, 0)ds = ∫ ω

0 a(s)ds, then c−
is nonnegative. If

∫ ω
0 g(s, 0)ds <

∫ ω
0 a(s)ds, it is not intuitive to see the sign of c−.

However, we can determine its sign in the case where the dispersal is described by a
diffusion-advection plus settling process. For (1.3) with the dispersal kernel (1.1) and
constant β, v and D, the upstream spreading speed is given as

c− = inf
0<α<b1

∫ ω
0 (g(s, 0)− a(s))ds + ∫ ω

0 a(s)ds β

β+αv−α2 D

αω
. (4.11)

123



Population spread and persistence in streams 429

The critical domain size for (4.10) with the same kernel is

L(λ) =
4 arctan

(√
4b1|b2|

λ(b1−b2)2
− 1

)−1

(b1 − b2)

√
4b1|b2|

λ(b1−b2)2
− 1

,

where λ = 1 − ∫ ω
0 g(s, 0)ds/

∫ ω
0 a(s)ds (see (2.14) in Jin and Lewis 2011). We then

obtain

L

(
1 −

∫ ω
0 g(s, 0)ds∫ ω

0 a(s)ds

)
= ∞

if and only if

1 −
∫ ω

0 g(s, 0)ds∫ ω
0 a(s)ds

= 4b1|b2|
(b1 − b2)2

. (4.12)

Substituting (4.12) into (4.11), we obtain c− = 0 with the infimum attained at α =
v/(2D) ∈ (0, b1). Moreover, we can show that

L

(
1 −

∫ ω
0 g(s, 0)ds∫ ω

0 a(s)ds

)
< ∞ ⇔ c− > 0.

Therefore, the condition for the critical domain size for (4.10) to tend to infinity
is exactly the one for which the upstream spreading speed for (1.3) tends to 0 (from
positive values). We then conclude that a population can persist in a bounded stream
(i.e., the critical domain size is finite) if and only if it has a nonnegative upstream
spreading speed in an infinitely long stream, which has been illustrated in the numeri-
cal examples in Sect. 3. This allows us to use the condition of the upstream spreading
speed c− ≥ 0 to represent persistence for the population in an infinitely long stream.

For more general dispersal kernels, we expect that the result here is still true, but it
is beyond the scope of this paper.

There are still many new problems in the mathematical investigation of single spe-
cies models for spread and persistence in streams. Future work includes analyzing
stream systems with random as opposed to time periodic fluctuations in water flow.
Also the interplay between the coeffects of temporal and spatial variability in stream
systems is a rich area for complex dynamical outcomes.

Acknowledgments The authors are grateful to the anonymous reviewers who greatly helped to improve
the paper. YJ thanks Xiaoqiang Zhao for insightful discussions and introduction of his recent works.
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5 Appendices

Appendix A: Derivation of model (1.2)

To understand the population dynamics and invasions of stream species, the autono-
mous version of (1.2)

∂u(t, x)

∂t
= u(t, x)g(u(t, x))− au(t, x)+ a

∫
�

k(x, y)u(t, y)dy, t ≥ 0, x ∈ �

has been well established and studied in (e.g., Hutson et al. 2003; Lutscher et al.
2005; Othmer et al. 1988; Turchin 1998), and the temporally constant but spatially
heterogeneous version of (1.2)

∂u(t, x)

∂t
= u(t, x)g(x, u(t, x))− a(x)u(t, x)+

∫
�

k(x, y)a(y)u(t, y)dy, t ≥ 0,

x ∈ �

has also been derived and investigated in, e.g., Anderson et al. (2005) and Diehl et al.
(2008). These models describe growth and dispersal where dispersal is effectively
instantaneous when compared to the time scale for growth. The first term in the above
equations describes population growth. The second term describes transfer (uptake)
into the dispersing class. The third term describes the effectively instantaneous reap-
pearance of the disperser in a new spatial location. Unlike the above models, our
model (1.2) includes temporal heterogeneity in the growth, transfer and dispersal, so
for self-completeness, we derive (1.2) from first principles.

It is well known that almost all species of invertebrates in streams have a part of the
population living in the benthic zone as well as the rest of the population drifting in
water (Allan 1995). Drift invertebrates transfer (uptake) from the benthic zone, drift
in the water column for a short time, reattach to the benthic zone, re-enter the drift
once again, and so on (Elliott 2002; Waters 1965). In fact, most invertebrates spend
very little time in water during each drift. For example, experiments in Elliott (2002)
showed that, at a site in Wilfin Beck (a small stream (length 4 km) in the English Lake
District), 25% of the drifting Baetis or Gammarus returned to the substratum after only
3 s, 1% remained in the drift for 43 s, and most of the other organisms drifted in water
for about 3–43 s. This results in organisms’ settling rate (from water to the benthic
zone) on the order of 2009–28,800 day−1. Comparing this settling rate to Baetis’s
growth rate (e.g., <0.04 day−1 in Humpesch 1979) and taxa’s approximate transfer
rate (or uptake rate) from the benthic zone to water (e.g., 0.29–6 day−1 in Diehl et al.
2008), we can clearly conclude that for stream invertebrates, settling process is very
fast relative to transfer (or uptake) process or growth. As our goal is to understand the
long-term behaviors of stream invertebrates, we would like to consider their dynamics
on the time scale of average uptake.

We divide the population of stream invertebrates into two classes: stationary indi-
viduals that stay in the benthic zone and mobile individuals that drift in water. We
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assume that birth only occurs in the stationary class in the benthic zone, but that mor-
tality occurs in both classes. Let u (1/space2) be the density of the stationary individuals
and w (1/space2) be the depth-integrated spatial density of individuals in the water
column, respectively. The per capita growth rate is g(t, u) (1/time); the transfer rate (or
uptake rate) from the stationary class to the mobile class is a(t) (1/time); the settling
rate from the mobile class to the stationary class is β(t) (1/time); the mortality rate
of the mobile individuals is μ(t) (1/time); the movement for the mobile individuals is
governed by a differential operator

G(t) = D(t)
∂2

∂x2 − v(t)
∂

∂x

with D(t) (space2/time) being the diffusion rate and v(t) (space/time) being the flow
speed. It follows from the conservation of the population that the population dynamics
is governed by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u(t, x)

∂t
= u(t, x)g(t, u(t, x))− a(t)u(t, x)+ β(t)w(t, x),

∂w(t, x)

∂t
= D(t)

∂2w(t, x)

∂x2 − v(t)
∂w(t, x)

∂x
+ a(t)u(t, x)− β(t)w(t, x)

−μ(t)w(t, x).

(5.1)

Reasonably, we assume that a(t), β(t), μ(t), D(t) and v(t) are all positive, con-
tinuous and bounded functions. Furthermore, assume that g is continuous in t and u
and is decreasing in u, limT →∞ 1

T

∫ T
0 g(t, 0)dt > 0, and that there exists û > 0 such

that g(t, û) ≤ 0 for all t ≥ 0. Let ũ(t) be the population’s carrying capacity at time
t ≥ 0, which can be defined as the largest solution u(t) to u(t)g(t, u(t)) = 0. That is,
if g(t, 0) > 0, then we know ũ(t) > 0 for some t ≥ 0 because g(t, û) ≤ 0 for û and
g is continuous in u; if g(t, 0) ≤ 0, it may be that ũ(t) = 0 for some t ≥ 0. Define ā,
v̄ and ū as the average values attained by a(t), v(t), and ũ(t), respectively:

ā = lim
T →∞

1

T

T∫
0

a(t)dt, v̄ = lim
T →∞

1

T

T∫
0

v(t)dt, ū = lim
T →∞

1

T

T∫
0

ũ(t)dt.

By the assumptions in g it follows that ū > 0. Since settling is much faster than trans-
fer, we can assume that a(t)

β(t) is O(ε) uniformly in time for some ε with 0 < ε � 1.
That is,

a(t)

β(t)
= εh(t),

where h(t) is a positive bounded function of order 1. Assume that the first time a(t)
attains its average value ā is at time t = t̄ , i.e., a(t̄) = ā. Let β̄ = β(t̄). Without loss
of generality, we further assume ε is chosen such that h(t̄) = 1. Then ε = a(t̄)

β(t̄) = ā
β̄

.
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Rescale space and time appropriately by

t∗ = t ā, x∗ = x β̄

v̄
, u∗ = u

ū
, w∗ = w

ū
.

The system (5.1) becomes

⎧⎪⎨
⎪⎩
∂u∗

∂t∗
= u∗ g(t, u)

ā
− a(t)

ā
u∗ + β(t)

ā
w∗,

∂w∗

∂t∗
= D(t)β̄2

v̄2ā

∂2w∗

∂x∗2 − v(t)β̄

v̄ā

∂w∗

∂x∗ + a(t)

ā
u∗ − β(t)

ā
w∗ − μ(t)

ā
w∗,

(5.2)

where u∗ and w∗ are functions of t∗ and x∗. Let g∗(t∗, u∗) = g(t, u)/ā, a∗(t∗) =
a(t)/ā, μ∗(t∗) = μ(t)/ā, β∗(t∗) = β(t)/β̄, D∗(t∗) = D(t)β̄/v̄2, and v∗(t∗) =
v(t)/v̄. Dropping asterisks for notational simplicity and substituting ε = ā

β̄
, we rewrite

(5.2) as follows

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
∂u(t, x)

∂t
= εu(t, x)g(t, u(t, x))− εa(t)u(t, x)+ β(t)w(t, x),

ε
∂w(t, x)

∂t
= D(t)

∂2w(t, x)

∂x2 − v(t)
∂w(t, x)

∂x
+ εa(t)u(t, x)

−β(t)w(t, x)− εμ(t)w(t, x).

(5.3)

Next we derive (1.2) from (5.3) by singular perturbation theory (see e.g., Kevorkian
and Cole 1996). Substituting a regular asymptotic series solution

u(t, x) = u0(t, x)+ εu1(t, x)+ · · ·
w(t, x) = w0(t, x)+ εw1(t, x)+ · · ·

into (5.3) and comparing the coefficients of the orders of ε, we obtain w0(t, x) = 0 at
O(1) and

⎧⎪⎨
⎪⎩
∂u0(t, x)

∂t
= u0(t, x)g(t, u0(t, x))− a(t)u0(t, x)+ β(t)w1(t, x),

0 = D(t)
∂2w1(t, x)

∂x2 − v(t)
∂w1(t, x)

∂x
+ a(t)u0(t, x)− β(t)w1(t, x)

(5.4)

at O(ε). The second equation of (5.4) is equivalent to

−u0(t, x) = D(t)

a(t)

∂2w1(t, x)

∂x2 − v(t)

a(t)

∂w1(t, x)

∂x
− β(t)

a(t)
w1(t, x)

at O(ε). Let k(t, x, y) satisfy
∫
R

k(t, x, y)dx = 1 and

D(t)

β(t)

∂2k(t, x, y)

∂x2 − v(t)

β(t)

∂k(t, x, y)

∂x
− k(t, x, y) = −δ(x − y).

123



Population spread and persistence in streams 433

By a similar analysis as in section 4.1 in Lutscher et al. (2005), the kernel k(t, x, y)
can be derived as in the form in (1.1). Then

w1(t, x) = a(t)

β(t)

∫
R

k(t, x, y)u0(t, y)dy,

and hence,

∂u0(t, x)

∂t
= u0(t, x)g(t, u0(t, x))− a(t)u0(t, x)+ a(t)

∫
R

k(t, x, y)u0(t, y)dy,

which takes the form of (1.2) and is valid to O(ε). Indeed, this is the equation describing
population dynamics of stream invertebrates on the time scale of the average uptake.

Appendix B: Proof of Proposition 2.1

Case 1.�± = ∞. In this case, we can apply the theory of spreading speeds for mono-
tone scalar maps in Liang and Zhao (2007) and Weinberger (1982) to (1.3) to show the
existence of the spreading speeds of Qω in the downstream and upstream directions.
The details are omitted here as they are similar to those in Jin and Zhao (2009, Lemma
3.2). Then we estimate the spreading speeds c±

ω of Qω by using the linear approach
introduced in Liang and Zhao (2007) and following similar arguments as in Jin and
Zhao (2009, Proposition 3.4). The formulae of downstream and upstream spreading
speeds of Qω when �± = ∞ are given in (2.1) and (2.2), respectively.

Case 2. �− < ∞ or �+ < ∞. In this cases, we follow a similar limiting argu-
ment as mentioned in the proof of Proposition 3.4 in Jin and Zhao (2009) to show the
existence of the spreading speeds in the associated directions. We show (2.2) when
�− < ∞. If �+ < ∞, (2.1) can be similarly obtained. For t ≥ 0 and m > 0, define

km(t, x) =
{

k(t, x), x ≥ −m,
0, x < −m.

(5.5)

Let hm = ∫
R

km(t, y)dy. Then km/hm satisfies (H2) with�±(m) = ∞ and the result
in Case 1 can be applied to the period map Qω(m) of the system

∂u(t, x)

∂t
= u(t, x)g(t, u(t, x))− a(t)u(t, x)+ a(t)

∫
R

km(t, x − y)u(t, y)dy,

= u(t, x)g(t, u(t, x))− a(t)u(t, x)+ a(t)hm

∫
R

km(t, x − y)

hm
u(t, y)dy,

(5.6)
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for m ≥ m0 with m0 > 0 being some sufficiently large number. Hence, for m ≥ m0,
the upstream spreading speed of Qω(m) is

c−
ω (m) = inf

α>0
�m(α), (5.7)

where �m(α) = [∫ ω0 (g(s, 0)− a(s))ds + ∫ ω
0 a(s)

∫
R

km(s, y)e−αydyds]/α. Define

�(α) =
∫ ω

0 (g(s, 0)− a(s))ds + ∫ ω
0 a(s)

∫
R

k(s, y)e−αydyds

α
(5.8)

for α ∈ (0,�−) and c−
ω as in (2.2).

Claim: limm→∞ c−
ω (m) = c−

ω .Note that, for m ≥ m0,�m(α) is a positive continu-
ous function of α > 0. For each α > 0,�m(α) is monotone increasing in m. For each
α ∈ (0,�−), �m(α) < �(α) and �m(α) → �(α) as m → ∞. It then follows that
c−
ω (m) ≤ c−

ω . By Jin and Zhao (2009, Lemma 3.2 and Proposition 3.4),�m(α) → +∞
as α → 0 or +∞. Let ᾱm be the value of α satisfying c−

ω (m) = �m(ᾱm). By the fact
that limα→0�m(α) = +∞ and the monotonicity of �m in m, there exists α1 > 0
such that �m(α) > c−

ω for 0 < α < α1 for all m ≥ m0. Note that (H2)(iii) implies
�(�−) = ∞. Given K0 > c0, there exists a δ ∈ (0,�−) such that �(α) > K0 for
α ∈ [�− − δ,�−). Then there exists an m1 ≥ m0, such that �m(�− − δ) > K0 for
all m > m1. It follows that ᾱm ∈ [α1,�− −δ] for all m ≥ m1. Thus, there is a conver-
gent subsequence {ᾱmn } of {ᾱm}m≥m1 and for some α0 ∈ [α1,�− − δ], ᾱmn → α0 as
n → ∞. Then c−

ω ≥ lim supn→∞ c−
ω (mn) ≥ lim infn→∞�mn (ᾱmn ) = �(α0) ≥ c−

ω ,
and hence limn→∞ c−

ω (mn) = c−
ω . Since c−

ω (m) is increasing in m ≥ m0, we then
have limm→∞ c−

ω (m) = c−
ω .

We now show that c−
ω is the upstream spreading speed of the periodic map Qω of

(1.3). For any c > c−
ω /ω, we fix ĉ ∈ (c−

ω /ω, c). Then there exists ᾱ ∈ (0,�−), such
that ĉω ≥ �(ᾱ) ≥ c−

ω . Let ϕ ∈ Cu∗(0) and ϕ(x) = 0 for x < ρ with ρ ∈ R and
u(t, ·;ϕ) be the solution of (1.3) satisfying u(0, ·;ϕ) = ϕ. Choose γ̄ > 0 such that
0 ≤ ϕ(x) ≤ γ̄ eᾱx for all x ∈ R. Then we can verify that ū(t, x) = γ̄ eᾱ(ĉt+x) is an
upper solution of the linearized system to (1.3) at u = 0. It then follows from the
comparison principle that

0 ≤ u(nω, x;ϕ) ≤ ū(nω, x) = γ̄ eᾱ(ĉnω+x) ≤ γ̄ eᾱ(ĉ−c)nω, ∀n ∈ N, x ≤ −cnω,

which implies that limn→∞, x≤−cnω u(nω, x;ϕ) = 0. Let c ∈ (0, c−
ω /ω) be fixed,

ϕ ∈ Cu∗(0), ϕ �≡ 0 and u(t, ·;ϕ) be the solution of (1.3) satisfying u(0, ·;ϕ) = ϕ.
Since limm→∞ c−

ω (m) = c−
ω and c−

ω (m) ≤ c−
ω , there exists a sufficiently large num-

ber m̄1 ≥ m0 such that cω < c−
ω (m) ≤ c−

ω , ∀m ≥ m̄1. For any given m ≥ m̄1, let
ϕm

1 (x) = min{ϕ(x), u∗
m(0)} for all x ∈ R, where u∗

m(t) is the periodic solution of
(5.6) and its existence can be shown similarly as we do for u∗(t) to (1.3). Moreover,
we can show that limm→∞ u∗

m(0) = u∗(0). Note that u(t, ·;ϕ) is an upper solution of
(5.6). Then u(t, x;ϕ) ≥ um(t, x;ϕm

1 ), for all (t, x) ∈ [0,∞)×R and m ≥ m̄1, where
um(t, ·;ϕm

1 ) is the unique solution of (5.6) with um(0, ·;ϕm
1 ) = ϕm

1 . Since c−
ω (m) is

the upstream spreading speed of Qω(m), we have limn→∞,x≤−cnω um(nω, x;ϕm
1 ) =

u∗
m(0). Then
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u∗(0) ≥ lim sup
n→∞,x≤−cnω

u(nω, x;ϕ) ≥ lim inf
n→∞,x≤−cnω

u(nω, x;ϕ)
≥ lim inf

n→∞,x≤−cnω
um(nω, x;ϕm

1 ) = u∗
m(0)

for all m ≥ m̄1. Letting m → ∞, we obtain limn→∞,x≤−cnω u(nω, x;ϕ) = u∗(0).
Therefore, c−

ω is the upstream spreading speed of Qω.

Appendix C: Proof of Theorem 2.5

Let

U (t, θ) =
∫
R

u(t, x)e−iθx dx, K (θ) =
∫
R

k(x)e−iθx dx, ∀t ≥ 0, θ ∈ R.

Applying the Fourier transform to both sides of (2.5) yields

∂U (t, θ)

∂t
= g(t, 0)U (t, θ)− a(t)U (t, θ)+ a(t)K (θ)U (t, θ), ∀t ≥ 0, θ ∈ R,

which implies that

U (t, θ) = U (0, θ)e
∫ t

0 [g(s,0)−a(s)+K (θ)a(s)]ds, ∀t ≥ 0, θ ∈ R, (5.9)

where U (0, θ) = ∫
R

u0δ(x)e−iθx dx = u0. Note that K (θ) can be rewritten as

K (θ) =
∞∑

n=0

ζn
(iθ)n

n!

where

ζn =
∫
R

xnk(x)dx
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(see e.g., Kot et al. 1996; Weiss 1994). Then we take the inverse Fourier transform of
(5.9) and obtain

u(t, x)

= 1

2π

∫

R

U (t, θ)eiθx dθ

= 1

2π

∫

R

U (0, θ)e
∫ t

0 (g(s,0)−a(s))dse
∫ t

0 a(s)dsK (θ)eiθx dθ

= u0e
∫ t

0 (g(s,0)−a(s))ds
∫

R

1

2π
e
∫ t

0 a(s)dsK (θ)eiθx dθ

= u0e
∫ t

0 (g(s,0)−a(s))ds
∫

R

1

2π

∞∑
m=0

1

m!

⎧⎨
⎩
⎡
⎣

t∫
0

a(s)ds

⎤
⎦

m

[K (θ)]m

⎫⎬
⎭ eiθx dθ

= u0e
∫ t

0 (g(s,0)−a(s))ds
∞∑

m=0

1

m!

⎧⎪⎨
⎪⎩
⎡
⎣

t∫
0

a(s)ds

⎤
⎦

m ∫

R

1

2π
[K (θ)]m eiθx dθ

⎫⎪⎬
⎪⎭

= u0e
∫ t

0 (g(s,0)−a(s))ds
∞∑

m=0

1

m!

⎧⎪⎨
⎪⎩
⎡
⎣

t∫
0

a(s)ds

⎤
⎦

m ∫

R

1

2π
K (θ)

[ ∞∑
n=0

ζn
(iθ)n

n!

]m−1

eiθx dθ

⎫⎪⎬
⎪⎭.

Note that (iθ)n K (θ) is the Fourier transform of (−1)ndnk(x)/dxn . Similarly as in
Kot et al. (1996, Appendix A), we can obtain that

∫
R

1

2π
K (θ)

[ ∞∑
n=0

ζn
(iθ)n

n!

]m−1

eiθx dθ ∼ k(x), |x | � 1, m = 1, 2, . . . ,

provided that

lim|x |→∞

[
1

k(x)

dnk(x)

dxn

]
= 0

uniformly for all n ≥ 0. Therefore, if the above equation is true, then we can obtain
an approximation of the solution to (2.5) with an initial point source of strength u0:

u(t, x) ∼ u0e
∫ t

0 (g(s,0)−a(s))dse
∫ t

0 a(s)dsk(x) = u0k(x)e
∫ t

0 [(g(s,0)−a(s))+a(s)]ds

for |x | � 1, t > 0.
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Appendix D: Proof of Theorem 3.1

It follows from (3.2) that the moment generating function of k(n)(t, x) satisfies

M (n)(t, α) =
∫
R

k(n)(t, x)eαx dx ≤
∫
R

k2(x)e
αx dx +

∫
R

k1(x)e
αx dx

= M2(α)+ M1(α),

for any n ∈ N, t ≥ 0 and α ∈ (−�−,�+), which implies that for any n ∈ N and
t ∈ [0, ω], M (n)(t, α) exists for all α ∈ (−�−,�+). Let

In(α) = −
ω∫

0

a(n)(s)ds +
ω∫

0

a(n)(s)
∫
R

k(n)(s, y)eαydyds,

for all n ∈ N and α ∈ (−�−,�+). By (3.2) again, for any α ∈ (−�−,�+) and
n ∈ N, we have

−a1(ω0 − 1

n
)− a2(ω − 1

n
− ω0)−

ω0∫

ω0− 1
n

a(n)1 (s)ds −
ω∫

ω− 1
n

a(n)2 (s)ds

+

⎛
⎜⎜⎝

ω0∫

ω0− 1
n

+
ω∫

ω− 1
n

⎞
⎟⎟⎠
∫
R

a(n)(s)min{k2(y), k1(y)}eαydyds

+
ω0− 1

n∫
0

∫
R

a1k1(y)e
αydyds +

ω− 1
n∫

ω0

∫
R

a2k2(y)e
αydyds

≤ In(α)

≤ −a1(ω0 − 1

n
)− a2(ω − 1

n
− ω0)−

ω0∫

ω0− 1
n

a(n)1 (s)ds −
ω∫

ω− 1
n

a(n)2 (s)ds

+

⎛
⎜⎜⎝

ω0∫

ω0− 1
n

+
ω∫

ω− 1
n

⎞
⎟⎟⎠
∫
R

a(n)(s)max{k2(y), k1(y)}eαydyds

+
ω0− 1

n∫
0

∫
R

a1k1(y)e
αydyds +

ω− 1
n∫

ω0

∫
R

a2k2(y)e
αydyds.

Therefore, for any α ∈ (−�−,�+),

In(α) → −a1ω0 − a2(ω − ω0)+ a1ω0 M1(α)+ a2(ω − ω0)M2(α) as n → ∞.
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By (2.1) and (2.3), the downstream spreading speed for (1.3) with dispersal kernel
k(n)(t, x) and transfer rate a(n)(t) satisfies

c+
n = 1

ω
inf

0<α<�+

∫ ω
0 g(s, 0)ds − ∫ ω

0 a(n)(s)ds + ∫ ω
0 a(s)

∫
R

k(n)(s, y)eαydyds

α

→ 1

ω
inf

0<α<�+

∫ ω
0 g(s, 0)ds + a1ω0(M1(α)− 1)+ a2(ω − ω0)(M2(α)− 1)

α

(5.10)

as n → ∞. Similarly, we obtain that the upstream spreading speed for (1.3) with
dispersal kernel k(n)(t, x) satisfies

c−
n → 1

ω
inf

0<α<�−

∫ ω
0 g(s, 0)ds + a1ω0(M1(−α)− 1)+ a2(ω − ω0)(M2(−α)− 1)

α

(5.11)

as n → ∞.
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